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Robotic Depowdering for Additive Manufacturing via Pose Tracking

Zhenwei Liu!, Junyi Gengz, Xikai Dai!, Tomasz Swierzewski!, and Kenji Shimada'

Abstract— With the rapid development of powder-based
additive manufacturing, depowdering, a process of removing
unfused powder that covers printed parts, has become a major
bottleneck to further improve its productiveness. Traditional
manual depowdering is extremely time-consuming and costly,
and some prior automated systems lack adaptability to different
parts. To solve these problems, we introduce a robotic system
to fully automate depowdering. The key component is a visual
perception system, which consists of a pose tracking module
that tracks the 6D pose of powder-occluded parts in real-time,
and a progress estimation module that estimates the completion
percentage. The tracking module can be run efficiently on
a laptop CPU at up to 60 FPS. Experiments show that our
depowdering system can remove powder efficiently for various
types of parts without causing any damage. To the best of our
knowledge, this is one of the first vision-based, fully automated
depowdering systems for additive manufacturing.

I. INTRODUCTION

Depowdering, a process of removing unfused powder
surrounding 3D-printed parts, is an important post-processing
step for powder-based additive manufacturing. For example,
printed parts need to be extracted from the build box with the
residual powder removed, before being sent to subsequent
processes such as heat treatment and surface finishing.
Traditionally, depowdering is often performed manually,
where the human operators use shovels, vacuums, brushes,
and blowers to remove powder incrementally, as shown
in Fig. 1 (a). However, this process is tedious and time-
consuming, resulting in high operational costs. In addition,
the airborne powder raised during depowdering may cause
damage to the human respiratory system. Therefore, the
automation of depowdering has become an urgent need.

Some researchers developed simple automated systems
to tackle the depowering problem. For example, the HP
automatic unpacking station [1] and Solukon SFP series [2]
are able to perform depowdering for small-to-medium sized
parts through a combination of vibration, vacuum, and air
blasting. However, these solutions may damage fragile parts,
such as delicate polymer parts and unsintered metal parts
in binder-jet printing. The process also results in unknown
part poses, which raises the difficulty for subsequent part
handling. While some researchers directly use a compliant
gripper to extract parts from the unfused powder [3], the
method may not work well for large parts, since the drag
force generated when an object moves through powder
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Fig. 1.  (a) Examples of manual depowdering. Human operators use
blowers, vacuums, and brushes to remove the unfused powder. (b) Overview
of our depowdering system. The point cloud sequence from 3D cameras is
fed into the visual perception system to track the 6D pose of the powder-
occluded part. Based on the estimated pose, a depowdering path is generated
for the robot to remove powder through vacuuming and air blasting.

increases with the object size [4]. Besides, some fragile
printed parts may be unsuitable for gripping.

Other semi-automated systems aim to remove the small
amount of residual powder that remains on/inside printed
parts. The Solukon SFM series [5] rotate the entire part
in different orientations to let the powder flow out of the
inner structure. However, it requires printed parts to be pre-
depowdered. Nguyen et el. [6] used MaskRCNN [7] to
localize printed parts and rub them on a brush to remove
powder that sticks to the surface. Although it uses vision
feedback for part localization, this depowdering solution is
not fully automated, because printed parts still need to be
pre-depowdered. In addition, it only handles flat shapes and
requires a dataset of each specific part for neural network
training, which is difficult to obtain for customized parts.

To solve the above problems, we resort to vision-based
6D pose tracking. However, directly applying existing pose
tracking methods is challenging due to various reasons.
For instance, printed parts appear in a similar color to the
surroundings since they consist of the same material. Due to
various part shapes and powder occlusion, features such as
edges may not be available. In addition, the visible surface of
printed parts gradually changes during depowdering, which
poses extra challenges. In scenarios shown in Fig. 2, where
parts are not anchored to the build box, they might move or
lose balance when touched by cleaning tools or when powder
support is removed. These challenges indicate that the visual
perception system needs to be carefully designed.
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Fig. 2.
process. As the vacuum constantly removes powder, the part gradually loses
powder support and finally falls to one side.

Example of a printed part losing balance during the depowdering

In this paper, We develop a vision-based robotic system
that fully automates depowdering for various types of parts,
as shown in Fig. 1 (b). The depowdering system consists
of two major components: a visual perception system (VPS)
and a motion planning system (MPS). This paper mainly
focuses on the development of the VPS, which is to track
the 6D poses of powder occluded parts in real-time, identify
the powder contour around printed parts, and estimate the
depowdering progress. To demonstrate the effectiveness of
our VPS, we apply a simple motion planner to generate a
depowdering path for the robotic arm based on the part pose
and the powder contour provided by VPS.

In particular, we design an algorithm that leverages
iterative closest point (ICP) [8] and template update [9] to
track the part pose. It constantly registers a template to the
point cloud scan, with the template derived from the CAD
model based on the current visual appearance of the part. In
addition, we propose a conditional template update strategy
to avoid accumulated template update error. We then extract
the powder contour around the printed part and estimate the
depowdering progress based on the 6D pose. Due to the
nature of template matching, our approach does not rely on
feature extraction, thus is robust to point cloud noise and
occlusion. Different from other learning-based methods that
require a long time of neural network training, our method
only requires the CAD model and the initial object pose,
which are usually available in additive manufacturing.

To summarize, the main contributions of this paper are:

1) We develop a vision-based robotic system that

fully automates depowdering, which is applicable to
different part shapes and avoids damaging fragile parts.
To the best of our knowledge, this is one of the first
vision-based, fully automated depowdering systems.

2) We design an efficient pose tracking algorithm, which

combines ICP and conditional template update without
the need for a large dataset or neural network training.

3) We present thorough real-time experiments to evaluate

the tracking performance on various parts. The tracking
pipeline is computationally efficient, which can be run
on a laptop CPU at maximum 60 FPS.

II. RELATED WORK
A. Automated Depowdering

Traditionally, depowdering tasks are accomplished by
human labor. However, the huge demand due to the
recent growth of 3D printing technologies raises the
need for automated depowdering. As mentioned previously,
prior works address automated depowdering through a

combination of vibration, vacuum, and air blasting [1] [2],
using a compliant gripper to directly extract parts [3],
rotating parts in different orientations [5], and rubbing parts
on a brush based on visual localization [6]. Recently, Lim et
el. [10] introduced a pipeline as a subsequent work of [6] that
generates synthetic images of powder-occluded parts, which
can be used to train the Mask-RCNN for part localization in
[6] and save some effort for dataset preparation. Compared
with previous works, our robotic system is applicable to
printed parts with different shapes and does not require a
large dataset for neural network training.

B. 6D Pose Estimation

6D pose estimation provides critical information for
robots to perform planning and execution. Current methods
regarding 6D pose estimation can be categorized as instance-
level [11]-[16], where the CAD models of known instances
are given as priors, or category-level [17]-[22], where the
CAD model is not available and the target object may
be unseen during training. Depending on whether deep
learning is applied, 6D pose estimation can also be classified
as geometry-based [23]-[28] or learning-based [11], [13],
[19]-[21]. Each category has its own pros and cons. For
example, learning-based methods can generalize to different
backgrounds, occlusion, and lighting conditions. However,
they require a large amount of data for neural network
training, which may not be efficient for some applications.

Compared to learning-based methods, geometry-based
methods are simple, accurate, and can be quickly
implemented and deployed. Iterative closest point (ICP) [8],
a well-known geometry-based algorithm for point cloud
registration, estimates the 6D pose by aligning the source
point cloud to the target point cloud. While several variants
of ICP have been proposed to improve the registration
performance [29]-[31], they either require feature selection
or cannot achieve real-time performance. In this paper,
we develop an adaptive algorithm that leverages ICP and
template update. The algorithm does not rely on feature
extraction, and is robust to sensor noise and occlusion.

III. SYSTEM OVERVIEW
A. Hardware Platform

The main components of our hardware platform are:

e a Denso VS-6577 6-axis manipulator, with a cleaning
nozzle attached to the end-effector.

o two Realsense L515 cameras, which generate a point
cloud sequence of the scanned object.

« a build box with printed parts and powder! inside.

B. System Architecture

The architecture of the depowdering system is shown in
Fig. 3. It consists of a visual perception system (VPS), which
is the main focus of this paper, and a motion planning system
(MPS). The VPS tracks the part pose in real-time, extracts

'We use children-play sand in the experiment since it is safe and easy to
handle while mimics the property of the actual polymer and metal powder.
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Fig. 3. The architecture of our system. The inputs to the system are the CAD model and the point cloud can. When the depowdering progress is less than
M1, no tracking is performed, and the initial pose is used. Once the progress exceeds 1, CU-ICP starts running. The robot first removes powder through

vacuuming, and then finishes up depowdering by air blasting.

the powder contour around printed parts, and estimates the
depowdering progress. The progress is defined as the height
ratio between the visible portion of the part and the complete
part, which will be further explained in Sec. IV-C. Then,
based on the estimated pose and the powder contour, as
shown in Fig. 3 (c), the MPS generates a depowdering path?
along the outer contour of the visible part surface, shown in
Fig. 3 (d). Overall, the depowdering process can be divided
into three phases based on the progress 7:

Phase 1: 0 < n < n. No pose tracking is performed
because not enough part surface is available for tracking.
Printed parts are assumed to stay at the initial pose®. The
powder contour and the path are generated based on the
initial pose. The robotic arm follows the path and removes
powder through vacuuming. We empirically select 177 = 30%
based on the observation from the depowdering experiments.

Phase 2: M1 <M < M. Pose tracking starts. The powder
distribution and depowdering path are generated based on the
estimated part pose. The robot follows the path and removes
powder through vacuuming. Note that the generated path
automatically adjusts to a new pose when the part moves.
We select 1, = 85% as we observe that printed parts usually
appear to be fully uncovered with progress larger than 85%.

Phase 3: 12 <1 <100%. The majority of the printed part
has been uncovered. To finish up depowdering, the robot goes
over the entire part surface and removes the residual powder
through air blasting from the top®. After this step, parts can
be sent for further post-processing.

>The path is collision-free because it is always certain distances away
from the outer contour of the visible part surface.

3During this stage, the majority of the printed part is still buried under
powder. Therefore, the powder will hold the part in place.

4Currently the vacuum is manually switched to air blower by reconnecting
the hose. The power source switching can be automated in the future work.

IV. VISUAL PERCEPTION SYSTEM

The printed parts are completely covered by unfused
powder initially, with the powder surface slightly higher than
the top of the part. The initial part pose Tj,; can be obtained
from the 3D printing system. With the CAD model P,.q,
the initial pose T, and a sequence of point cloud scan
P,i=1,...,t as input, the goals of the VPS are to:

« track the current 6D part pose 7; in real-time.

« identify the powder contour around the part and estimate

the depowdering progress based on T;.

A. Mismatch Dilemma in ICP

With the known initial pose and the CAD model,
we formulate the pose tracking problem as a real-
time registration problem. Given an initial pose Tj,;, the
traditional ICP is able to align a source point cloud to a target
point cloud by minimizing the L, error without relying on
feature extraction. For our pose tracking task, the source is
the template point cloud F,,,,; derived from the CAD model,
and the target is the current point cloud scan P;. By constantly
aligning P, to P; with the previous pose estimate 7; | as
a prior, ICP outputs a relative transformation 7;,_; between
the current pose and the previous pose. The new pose T; can
then be derived by T; =T; ;1 x T;_;.

One major challenge for ICP is the target appearance
variation, i.e., printed parts start from fully occluded to fully
visible. A common practice to address this is to update the
template based on the current object appearance. While many
researchers investigated the template update strategies [9],
most of them only address the scenario for 2D images. We
explore further by extending these strategies from 2D to 3D.

Strategy 1 A naive way is to use the entire CAD model
as a template and does not update the template. However,
this could result in a mismatch between the template and the
target due to the partially visible appearance, see Fig. 4 (c).
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Strategy 2 One way to account for the appearance
variation is to update the template every frame by taking the
overlap between the CAD model and the current point cloud
scan, shown in Fig. 4 (d). Nonetheless, this strategy still
may not achieve ideal performance, as the template quickly
becomes erroneous, as shown in Fig. 4 (e) and Fig. 5. This is
because the sensor noise causes the instability of alignment
and finally leads to template mismatch.

(a) Powder-occluded Part (b) Ground Truth Pose (c) Strategy 1

(d) Ideal Template (e) Strategy 2 (f) Strategy 3 (Ours)

Fig. 4. A comparison of different template update strategies. (a) A propeller
partially covered by powder. (b) The CAD model rendered according to the
ground truth pose. (c) Pose tracking result with strategy 1. (d) Template
taken from the overlapping area between the CAD model and the scan. (e),(f)
Pose tracking results with Strategy 2 and our strategy. With Strategies 1 and
2, the bottom of the propeller is mistakenly aligned to the powder surface,
resulting in incorrect estimated pose. Our strategy resolves this issue.

Fig. 5.
The initial template aligns well with the point cloud (left). As tracking
starts, although the target remains stationary, the sensor noise causes the
oscillation of the estimated pose. The oscillation results in the template
error accumulation, leading to an incorrect template and pose estimate.

Visualization of template error accumulation with Strategy 2.

B. Conditional Update ICP

We propose a conditional template update strategy for ICP
to avoid accumulated template update errors. Specifically,
the template is updated only when the part appearance has
changed significantly. In depowdering, this happens either
when (1) more part surface becomes visible as more powder
is cleaned or (2) printed parts have moved either by the
depowdering tool or due to the loss of balance. Either
scenario causes the powder distribution to change.

Strategy 3 The template is updated only when the
orientation R, translation #, or depowdering progress n
change by a significant amount:

If ‘Rileast‘ > & or |ti7tlast‘ > & or |Tli*nlast| > 533

then Py, = (Peaa - i) N P;
i _ pi—1
else tmpl — Ptmpl’

(D
where Rj,s, tast, and 1. are the orientation, translation,
and progress at the last time when the template was updated,

Pt"mpl is the current template, and P,,4 - T; is the CAD model
transformed to the current pose. d;, &, and O3 are user-
defined thresholds that control the template update frequency.
Since this rule avoids unnecessary template update, the shape
of the template is preserved throughout depowdering.

With this new template update rule, we develop our
Conditional Update ICP (CU-ICP) algorithm shown in
Alg. 1. The template is initialized (Lines 4-6) by
transforming the CAD model to the initial part pose and
running Alg. 2. Then, ICP constantly registers the template
to the current scan, updates the current pose, and transforms
the CAD model to the new pose (Lines 8-10). Based on the
new pose, the depowdering progress is calculated, which will
be discussed further in Sec. IV-C. If the condition is satisfied,
the template will be updated (Lines 12-16). Specifically, for
each point p.,q in the CAD model, Alg. 2 finds its nearest
neighbor p,;, from the scan (Line 3). If the distance is within
a threshold, p.qq is considered to be matched and is added
to the updated template (Lines 5-6).

Algorithm 1 Conditional Update ICP
1: while true do

2: P, +— GetCurrentScan,;

3 if first iteration then

4 T; <~ Tinit;

5 P..q < TransformPointCloud (P, , Tinir);
6: Pimpi < TemplateUpdate(P..q,P,);

7 end if

8 Tiio1 ICP(leplaPi);

9: T T X} Tj

10: P.4q < TransformPointCloud(P.qy,T; i—1);
11: 7n; + ProgressEstimation(P.,;, P;);

12: if Ri—Ryu > 01 1 t; — t105 > 8 | i — Myuse > &3 then
13: Piympi < TemplateUpdate(P..q, P);

14: Rigse < Ri;

15: Hast < 1i;

16: Niast < Mis

17: end if

18: end while

Algorithm 2 Template Update

1: Ptmpl — 0

2: for each p.uq in P,y do
3: pup < FindNearestNeighbor(p .4, P;);
4: d + CalcEuclideanDist(p qq, pup);
5
6
7

if d <& then
Add pead 10 Prppis
: end if
8: end for
9: return B,

C. Progress Estimation

Progress estimation monitors the percentage of completion
for depowdering, with 0% meaning parts are completely
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(@) (b) (c)

Fig. 6. Powder contour extraction and progress estimation. (a) Powder
(orange) segmented from the scan. (b) Powder contour generated by
selecting points surrounding the part contour. (c) Progress estimation based
on the height ratio of the visible surface and the whole part.

covered, and 100% meaning depowdering is completed. It
is also an important factor for conditional template update,
as described in Sec. IV-B. Given an entire CAD model
and an updated template that represents the visible portion,
an intuitive way is to calculate the ratio between their
surface area or volume. However, these two metrics may
not accurately reflect the depowdering progress due to the
potential non-linear changing pattern for parts whose cross
section area varies significantly in the vertical direction. In
fact, the progress is directly related to the powder surface
height, because the unfused powder is removed layer by
layer with a constant thickness drop through vacuuming.
Therefore, we select the height ratio between the template
and the CAD model to reflect the progress.

To estimate the depowdering progress based on height
ratio, the first step is to identify the powder contour around
the visible part surface. As shown in Fig. 6 (a), based on the
estimated pose, the point cloud scan can be segmented into
part and powder. The powder contour is then extracted by
selecting powder points that are certain distances away from
the part segment, as shown in Fig. 6 (b). By calculating the
average height of the powder contour H,,,, the depowdering
progress 1 can be calculated by:

max
_ Hcad 7H/70W (2)
~ pymax min ’

Hcad - Hcad

where H_;5" is the height of the CAD model’s top surface
and H]} is the height of the CAD model’s bottom surface.
If Hp,, is higher than H!'%Y, Hp,,, is truncated to H'%

cad ° cad *
V. EXPERIMENTS

In this section, we first introduce the experimental setup.
Then, we perform several experiments to validate the
tracking performance of our CU-ICP. Finally, we present
several complete demonstrations of the overall depowdering
processes achieved by the robotic system.

A. Experimental Setup

Evaluation Objects. We evaluate our system on five 3D
printed parts with different shapes: cube, cup, propeller, owl,
and pipe, shown in Fig. 7. The sizes of these objects, defined
as the diagonal length of the object’s minimum 3D bounding
box, vary from 8 centimeters to 15 centimeters. We cover

SIn scenarios where the printed part is fully covered, the segmentation
can still be performed, as the points in the scan that are close to the top of
the part will be grouped as the part segment. Therefore, the powder contour
can still be generated based on the segmentation result at this stage.

Fig. 7.
propeller, owl, and pipe. Although these parts are printed in different colors,
the color information is not used.

Parts selected for evaluation. From left to right are: cube, cup,

printed parts with various amounts of powder to generate
a range of surface visibility. For convenience, we define
visibility the same as depowdering progress, see Eq. (2).
Evaluation Metrics. For stationary objects, we report the
following metrics for pose tracking: 1) Rey: mean rotation
error in degrees, and 2) t.: mean translation error in
centimeters. For moving objects, we employ the success rate
and maximum trackable speed.

Baseline Comparison. We compare our algorithm with two
baselines: (1) Vanilla ICP, where the entire CAD model is
used as a template and no template update is performed;
(2) Continuous ICP, where the template is updated in every
frame based on method specified by Alg. 2.

Key Parameters. We empirically select d; = 30deg, & =
S5cm, and &3 = 15%, as we notice that an overly large
threshold leads to an outdated template caused by the less
frequent template update, while an overly small threshold
ends with very frequent update that results in error
accumulation as explained in Sec. IV-A. In addition, we
select 111 = 30% and 1, = 85% for the depowdering progress
thresholds, as mentioned in Sec. III-B.

B. Pose Tracking for Static Objects

In a real depowdering environment, printed parts are
partially visible. The robot end-effector introduces extra
interference and occlusion while moving around parts. To test
the pose tracking accuracy under this condition, we manually
move a nozzle around stationary parts, with the visibility
ranging from 20% to 100%, as shown in Fig. 8.

Fig. 8.
visibility. We manually move the nozzle around parts to simulate the actual
depowdering environment with point cloud occlusion and interference. The
red arrow shows the nozzle moving direction.

Experimental setup for tracking static objects at different

As shown in Table I, our algorithm achieves significant
better performance compared to Continuous ICP and vanilla
ICP, especially when the surface visibility is less than or
equal to 60%. Thanks to the conditional template update,
the template formulation is robust to additional point cloud
occlusion and interference. In fact, in this static object
scenario where no significant changes occur on either 1 or
T;, CU-ICP does not perform unnecessary template update
and therefore is able to maintain a stable template.
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TABLE I
POSE TRACKING ERROR WITH DIFFERENT LEVELS OF SURFACE VISIBILITY

Rerr (degree) terr (cm)
Surface Visibility | 20% 40% 60% 80% 100% | 20% 40% 60% 80% 100%
Cube 168 169 073 287 429 1.05 015 019 028 035
Cup 38 405 376 306 503 | 094 107 068 067 0.60
CU-ICP (ours) Propeller 660 262 212 226 245 083 039 036 015 019
Owl 479 155 124 164 585 | 220 155 066 080 0.40
Pipe 196 853 674 535 393 117 030 038 032 034
Overall 190 369 515 599 431 124 069 045 044 038
Cube 168 376 1.80 377  4.46 1.38 022 024 027 035
Cup 503 36.1 343 134  5.66 654 208 1.13 085 0.79
Continuous ICP Propeller 1.1 127  4.04 127 108 | 414 2838 170 0.70 049
Owl 740 39.1 123 267 701 479 266 079 131 0.42
Pipe 555 297 185 679 4.6 232 125 138 060  0.38
Overall 415 243 142 127 642 | 383 182 105 075 049
Cube 18.1 352 243 349 449 141 023 027 030 035
Cup 420 363 360 133 580 | 294 204 115 091 0.80
Vanilla ICP Propeller 104 7.61 447 169 162 | 402 285 178 0.62 044
Owl 75.1 699 270 289 6.5 491 464 1.69 140 041
Pipe 572 300 189 686  4.25 238 130 1.14 0.1 0.38
Overall 406 295 178 139 750 | 3.13 221 121 077 048

! Surface visibility here is defined the same as depowdering progress.
2 R, and t,,, represent rotation error and translation error, respectively. The lower the better.

- As shown in Table II, the overall success rate of CU-

ICP is significantly higher than other baselines. Note that

both Continuous ICP and Vanilla ICP have low success

rate on propeller, cup, and pipe, while CU-ICP shows

better performance among all different parts. The reason is

Fig. 9. Experimental setup for tracking moving objects, with the initial that the inner structures of the cup and propeller cannot

surface visibility ranging from around 40% to 60%. We use the robotic arm  be scanned by the camera, while the CAD models still

to push the part until it reaches the box edge, and test if the part pose can contain the inner structures. Without the conditional template
be tracked during the motion. ; R

update, the inconsistency between the CAD model and the

TABLE II scan easily leads to a pose estimation error and template

SUCCESS RATE (%) OF TRACKING MOVING OBJECTS IN POWDER mismatch. For the pipe, the curved pointcloud cannot be
exactly reconstructed due to the camera limitation, which

Method Cube | Cup | Propeller | Owl | Pipe | Overall again challenges the baseline approaches to handle error
&ﬂ;ﬁﬂlﬁgu{csi, igg 800 14000 }83 gg g§ accumulation. The fact that our CU-ICP is less affected by
Vanilla ICP 60 0 0 100 | O 32 these drawbacks demonstrates its robustness to point cloud

occlusion as well as distortion.

C. Pose Tracking for Moving Objects D. Maximum Trackable Speed

When a printed part moves through powder, the powder We test the maximum part moving speed at which the
distribution changes as the powder piles up on one side  (racking algorithms lose track of the selected parts. We
and spreads out on the other side. To examine the tracking e 3 linear actuator and a turntable to generate adjustable
performance for moving objects, we use the robotic arm t0  (anslation and rotation®, as shown in Fig. 10 (a).
push printed parts at different initial contact points, till they As shown in Fig. 10 (b), it is obvious that CU-ICP
reach the edge of the build box. The resulting motion is a  eqults in higher maximum trackable speed compared with

C(.)mblnatlon of translation .and rot'atlon. With the 1n1F1al POSe  Continuous ICP and Vanilla ICP with visibility of less than
given, we run pose tracking while parts are moving. For

each selected part in Fig. 7, we randomly sample five initial ®Due to the hardware limit, the maximum moving speed that the linear
contact points. Hence, 25 trials are performed in total. A trial actl.lator and tl}rntable can generate is limited. Therefote, in order to achieve
is defined ful if the final ori . . ithi arbitrary moving speed, we playback the recorded point cloud sequence at
1s defined as successtul 1f € 'e na Orl.enta'tlo.n €rror 18 within faster frame rates instead of physically moving parts. Then we uniformly
15deg and the final translation error is within 15mm. downsample the sequence to the normal frame rate.
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(a) Experimental setup for maximum trackable moving speed test. We use a linear actuator and a turntable to generate translation and rotation

for printed parts. (b) Maximum trackable moving speed in translation and rotation for different printed parts with various surface visibility.

Fig. 11.

A complete depowdering process for the pipe. The lower right picture of each snapshot shows the estimated pose in red and the corresponding

template in green. (a) Progress is 0%. The pipe is entirely covered by powder. (b) Progress reaches 30%. CU-ICP starts tracking the part pose. (c) The
part becomes more visible, and the robot continues to remove powder along the outer contour of the pipe. (d) The pipe loses balance due to the loss of
powder support. The robot adjusts to the new pose and avoids collision. () The robot removes the residual powder through air blasting.

Fig. 12. A complete depowdering process for two cubes. We run two tracking processes in parallel to improve tracking efficiency. The robot first performs
depowdering on the left cube for one cycle, and then moves on to the right cube for another cycle. (a) Progress is 0%. The cubes are entirely covered by
powder. (b) Progress reaches 30% and two cubes starts being tracked in parallel. (c)-(d) CU-ICP keeps tracking poses and two cubes gradually become
more visible. (e) The residual powder is removed through air blasting.

80%. As the visibility increases, the maximum trackable
speeds for the three algorithms gradually become close
to each other. This is because the updated template is
more similar to the original CAD model. Also, note that
the maximum trackable speed for CU-ICP and Continuous
ICP may not strictly increase along with the visibility,
such as the cup translation with visibility from 20% to
80% and the pipe translation with visibility from 40% to
100%. This indicates that increasing target visibility does
not necessarily result in a higher trackable speed. In fact, as
the target visibility increases, the number of points in the
template to be processed also increases, which slows down
the computation and reduces the tracking capability of the
algorithms. Overall, CU-ICP can be run on a laptop CPU

with the maximum processing rate of around 60fps.

E. Depowdering with the Robotic System

Finally, we demonstrate several complete depowdering
processes achieved by our robotic system. Two depowdering
scenarios are considered here: (1) single-part depowdering,
and (2) multiple-part depowdering, as shown in Fig. 11 and
Fig. 12. In the former scenario, the printed part loses balance
during the process and falls to one side. The robot is able
to adjust to the new pose and successfully avoids collision.
In the latter scenario, the pose tracking for different parts
is run in parallel to improve the computation efficiency.
The robot successfully removes powder for all parts. The
two demonstrations prove that our system fully automates
depowdering without the concern of damaging fragile parts.
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VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper proposes a robotic system that fully automates
depowdering using visual feedback. The main component is
a visual perception system that takes in the scanned point
cloud from the depth camera, tracks the 6D pose of powder
occluded parts, and identifies the powder contour for progress
estimation and path generation. Experiments show that the
pose tracking module is robust to occlusion and sensor noise.
In particular, our tracking algorithm, named Conditional
Update ICP (CU-ICP), achieves higher tracking performance
compared to other baselines. The depowdering system is
able to fully automate depowdering without the concern of
damaging fragile parts. Future work includes investigating
more advanced path planning strategies to further improve
the depowdering efficiency for various types of parts.
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